PROBLEM SET 4

It's OK to co-operate with classmates on problem sets. If you get stuck on a problem, don't waste a lot of time on it --- you have better things to do.

The following problems from Starr's *General Equilibrium Theory*, 2nd edition, are assigned.

21.1

22.1

22.2

22.3

In addition, one problem adapted from the June 2010 qual is assigned, attached below.

4. Consider core convergence in a pure exchange economy becoming large through *Q*-fold replication.

4.1. Consider an example where there are two commodities, x and y, and two trader types, 1 and 2.

Type 1 is characterized as having utility function

$$u^1(x,y) = xy$$
, and endowment
 $r^1 = (99,1).$

Type 2 is characterized as having utility function

$$u^2(x,y) = xy$$
, and endowment
 $r^2 = (1,99).$

Show that the following allocation, a^1 to type 1 and a^2 to type 2, is in the core for the original economy with one of each type, and is not in the core for an economy with $Q \ge 2$: $a^1 = (90, 90); a^2 = (10, 10).$

4.2. *H* represents an economy with a finite number of households of strictly convex, continuous preferences; the typical endowment is r^h and the typical allocation is x^h for $h \in H$ with preferences \succeq_h . Let *Q* be a positive integer. Let Core $(Q \times H)$ denote the set of core allocations of the *Q*-fold replica of the original economy *H*. Under the equal-treatment property, a typical core allocation will be represented by allocations to type, $\{x^h | h \in H\}$. Recall that blocking coalitions do not need to provide equal treatment in the blocking allocation. Denote the set of households of this economy as $Q \times H = \{h, q | h \in H, q = 1, 2, ..., Q\}$, where "h, q" is read as "the *q*th household of type h."

Demonstrate that Core $((Q + 1) \times H) \subseteq \text{Core}(Q \times H)$.

The question ends here. However, if your memory of core convergence is a bit thin you may find the following definitions useful:

A coalition is any subset $S \subseteq H$.

An allocation $\{x^i, i \in H\}$ is **blocked** by a coalition $S \subseteq H$ if there is an assignment $\{y^i, i \in S\}$ so that:

1. $\sum_{i \in S} y^i \leq \sum_{i \in S} r^i$ (where the inequality holds coordinatewise),

- 2. $y^i \succeq_i x^i$, for all $i \in S$, and
- 3. $y^{i'} \succ_{i'} x^{i'}$, for some $i' \in S$

The **core** of the economy is the set of feasible allocations that are not blocked by any coalition $S \subseteq H$.